The attention mechanism enables graph neural networks (GNNs) to learn the attention weights between the target node and its one-hop neighbors, thereby improving the performance further. However, most existing GNNs are oriented toward homogeneous graphs, and in which each layer can only aggregate the information of one-hop neighbors. Stacking multilayer networks introduces considerable noise and easily leads to over smoothing. We propose here a multihop heterogeneous neighborhood information fusion graph representation learning method (MHNF). Specifically, we propose a hybrid metapath autonomous extraction model to efficiently extract multihop hybrid neighbors. Then, we formulate a hop-level heterogeneous information aggregation model, which selectively aggregates different-hop neighborhood information within the same hybrid metapath. Finally, a hierarchical semantic attention fusion model (HSAF) is constructed, which can efficiently integrate different-hop and different-path neighborhood information. In this fashion, this paper solves the problem of aggregating multihop neighborhood information and learning hybrid metapaths for target tasks. This mitigates the limitation of manually specifying metapaths. In addition, HSAF can extract the internal node information of the metapaths and better integrate the semantic information present at different levels. Experimental results on real datasets show that MHNF achieves the best or competitive performance against state-of-the-art baselines with only a fraction of 1/10 ~ 1/100 parameters and computational budgets. Our code is publicly available at https://github.com/PHD-lanyu/MHNF.


翻译:关注机制使图形神经网络(GNNS)能够了解目标节点与其一站邻居之间的关注权,从而进一步提高业绩。 然而,大多数现有的GNNS都面向同质图形,每个层只能汇总一站邻居的信息。 堆积多层网络会带来相当大的噪音,容易导致平滑。 我们在此建议多点混杂的邻里信息融合图教学方法(MHNF) 。 具体地说, 我们提出一个混合流式流体自主提取模型, 以高效提取多点混合邻居。 然后, 我们开发一个跳级混杂信息汇总模型, 有选择地将不同点邻里的信息汇总在同一混合的混合模式中。 最后, 构建一个等级的语义融合关注模式(HSAF), 能够有效地整合不同点邻居的信息, 并且很容易地平流体信息。 本文解决了多点邻里信息和学习混合模式用于目标任务的问题。 这可以减少手动指定多点混合路径的局限性。 此外, HSAFF可以提取内部节点信息信息, 在同一个混合模式/ IMLS- deal developal developal deal deal dal dal dal deal dal deal deal deal deal dal dal dal deal daldal disaldaldal daldaldaldaldaldalpaldaldaldaldaldaldaldaldalpaldalpalpalpaldaldaldaldaldaldals 。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年8月12日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员