The attention mechanism enables graph neural networks (GNNs) to learn the attention weights between the target node and its one-hop neighbors, thereby improving the performance further. However, most existing GNNs are oriented toward homogeneous graphs, and in which each layer can only aggregate the information of one-hop neighbors. Stacking multilayer networks introduces considerable noise and easily leads to over smoothing. We propose here a multihop heterogeneous neighborhood information fusion graph representation learning method (MHNF). Specifically, we propose a hybrid metapath autonomous extraction model to efficiently extract multihop hybrid neighbors. Then, we formulate a hop-level heterogeneous information aggregation model, which selectively aggregates different-hop neighborhood information within the same hybrid metapath. Finally, a hierarchical semantic attention fusion model (HSAF) is constructed, which can efficiently integrate different-hop and different-path neighborhood information. In this fashion, this paper solves the problem of aggregating multihop neighborhood information and learning hybrid metapaths for target tasks. This mitigates the limitation of manually specifying metapaths. In addition, HSAF can extract the internal node information of the metapaths and better integrate the semantic information present at different levels. Experimental results on real datasets show that MHNF achieves the best or competitive performance against state-of-the-art baselines with only a fraction of 1/10 ~ 1/100 parameters and computational budgets. Our code is publicly available at https://github.com/PHD-lanyu/MHNF.
翻译:关注机制使图形神经网络(GNNS)能够了解目标节点与其一站邻居之间的关注权,从而进一步提高业绩。 然而,大多数现有的GNNS都面向同质图形,每个层只能汇总一站邻居的信息。 堆积多层网络会带来相当大的噪音,容易导致平滑。 我们在此建议多点混杂的邻里信息融合图教学方法(MHNF) 。 具体地说, 我们提出一个混合流式流体自主提取模型, 以高效提取多点混合邻居。 然后, 我们开发一个跳级混杂信息汇总模型, 有选择地将不同点邻里的信息汇总在同一混合的混合模式中。 最后, 构建一个等级的语义融合关注模式(HSAF), 能够有效地整合不同点邻居的信息, 并且很容易地平流体信息。 本文解决了多点邻里信息和学习混合模式用于目标任务的问题。 这可以减少手动指定多点混合路径的局限性。 此外, HSAFF可以提取内部节点信息信息, 在同一个混合模式/ IMLS- deal developal developal deal deal dal dal dal deal dal deal deal deal deal dal dal dal deal daldal disaldaldal daldaldaldaldaldalpaldaldaldaldaldaldaldaldalpaldalpalpalpaldaldaldaldaldaldals 。