Heterogeneous graph convolutional networks have gained great popularity in tackling various network analytical tasks on heterogeneous network data, ranging from link prediction to node classification. However, most existing works ignore the relation heterogeneity with multiplex network between multi-typed nodes and different importance of relations in meta-paths for node embedding, which can hardly capture the heterogeneous structure signals across different relations. To tackle this challenge, this work proposes a Multiplex Heterogeneous Graph Convolutional Network (MHGCN) for heterogeneous network embedding. Our MHGCN can automatically learn the useful heterogeneous meta-path interactions of different lengths in multiplex heterogeneous networks through multi-layer convolution aggregation. Additionally, we effectively integrate both multi-relation structural signals and attribute semantics into the learned node embeddings with both unsupervised and semi-supervised learning paradigms. Extensive experiments on five real-world datasets with various network analytical tasks demonstrate the significant superiority of MHGCN against state-of-the-art embedding baselines in terms of all evaluation metrics.
翻译:在应对关于不同网络数据的各种网络分析任务方面,从联结预测到节点分类,不同图层图层变异的图象共变网络已获得极大支持,然而,大多数现有工作忽略了多类型节点之间与多式网络的异质性关系,以及结点嵌入元路径关系的不同重要性,这几乎无法捕捉不同关系中不同的结构信号。为了应对这一挑战,这项工作提议为混合网络嵌入一个多氧化异质图谱层变异网络。我们的MHGCN可以通过多层次变异聚合,自动了解多种不同网络中不同长度不同长度的有用的异式元体反向相互作用。此外,我们有效地将多关系结构信号和定义都融入到已学的节点中,与不受监管和半监督的学习范式相结合。关于五个真实世界数据集的大规模实验表明,在所有评价指标中,MHGCN相对于最新嵌入基线具有显著的优势。