Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.


翻译:由于现实世界的物体及其相互作用往往是多式和多型的,因此,多样化的网络被广泛用作传统同质网络的更强大、更现实和通用超级类;与此同时,最近对代表性学习(aaka-embeding)进行了深入研究,并展示了对各种网络采矿和分析任务的有效性;在这项工作中,我们的目标是提供一个统一框架,以便深入总结和评估关于混杂网络嵌入(HNE)的现有研究,其中包括但超越了正常调查;由于这项工作的最初贡献,已经有一个广泛的HNE算法体系,因此,我们为对现有HNE算法的优点进行系统化的分类和分析提供了一个通用的范例;此外,现有的HNE算法尽管大多称为通用,但经常在不同数据集上得到评价;由于HNE的运用,这种间接比较在很大程度上妨碍了将改进的任务业绩适当归结为有效的数据处理前和新技术设计,特别是考虑到从现实世界应用数据中建立多种可能的方法,因此,我们为现有各种不同结构、不同结构、不同结构、不同结构、不同结构、不同结构、不同结构、不同结构、不同结构、不同结构、我们修正了四个基准数据集,从不同结构、不同结构、不同结构、不同结构、不同结构、不同结构、不同结构、不同结构的可变换了。

19
下载
关闭预览

相关内容

在计算机网络中,异构网络是一种连接计算机和其他设备的网络,其中操作系统和协议有显著差异。例如,将基于微软Windows和Linux的个人计算机与苹果Macintosh计算机连接起来的局域网(LANs)是异构的。异构网络也被用于使用不同接入技术的无线网络中。例如,通过无线局域网提供服务并在切换到蜂窝网络时能够维持服务的无线网络称为无线异构网络。
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
53+阅读 · 2018年12月11日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Representation Learning on Network 网络表示学习笔记
全球人工智能
5+阅读 · 2017年9月30日
Top
微信扫码咨询专知VIP会员