A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
翻译:大量真实世界的图形或网络本质上是多种多样的,涉及多种节点类型和关联类型。 异质图形嵌入是将多元图形的丰富结构和语义信息嵌入低维节点表示中。 现有模型通常在多元图形中定义多个元体以捕捉复合关系并指导邻居选择。 但是, 这些模型要么忽略节点内容特征, 丢弃代号沿线的中间节点, 要么只考虑一个元体。 为了解决这三个限制, 我们提议了一个新的模型, 名为Metapath 综合图形神经网络( MAGNN), 以提升最后的性能。 具体地说, MAGNN 使用三个主要组成部分, 即连接输入节点属性的节点内容转换, 包含中间语调节点的分子聚合, 以及将多个元体的电文组合。 在三个真实世界的多元图形数据集上进行的广泛实验, 用于节点分类、 节点组合和链接预测显示, MAGNNN 取得了比状态基线更准确的预测结果 。