A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.


翻译:大量真实世界的图形或网络本质上是多种多样的,涉及多种节点类型和关联类型。 异质图形嵌入是将多元图形的丰富结构和语义信息嵌入低维节点表示中。 现有模型通常在多元图形中定义多个元体以捕捉复合关系并指导邻居选择。 但是, 这些模型要么忽略节点内容特征, 丢弃代号沿线的中间节点, 要么只考虑一个元体。 为了解决这三个限制, 我们提议了一个新的模型, 名为Metapath 综合图形神经网络( MAGNN), 以提升最后的性能。 具体地说, MAGNN 使用三个主要组成部分, 即连接输入节点属性的节点内容转换, 包含中间语调节点的分子聚合, 以及将多个元体的电文组合。 在三个真实世界的多元图形数据集上进行的广泛实验, 用于节点分类、 节点组合和链接预测显示, MAGNNN 取得了比状态基线更准确的预测结果 。

44
下载
关闭预览

相关内容

近期必读的五篇KDD 2020【图神经网络 (GNN) 】相关论文_Part2
专知会员服务
160+阅读 · 2020年6月30日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
6+阅读 · 2019年9月25日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
Top
微信扫码咨询专知VIP会员