The time series captured by a single scalp electrode (plus the reference electrode) of refractory epileptic patients is used to forecast seizures susceptibility. The time series is preprocessed, segmented, and each segment transformed into an image, using three different known methods: Recurrence Plot, Gramian Angular Field, Markov Transition Field. The likelihood of the occurrence of a seizure in a future predefined time window is computed by averaging the output of the softmax layer of a CNN, differently from the usual consideration of the output of the classification layer. By thresholding this likelihood, seizure forecasting has better performance. Interestingly, for almost every patient, the best threshold was different from 50%. The results show that this technique can predict with good results for some seizures and patients. However, more tests, namely more patients and more seizures, are needed to better understand the real potential of this technique.
翻译:使用单一头皮电极( 加上参考电极) 来预测癫痫病人的发病敏感度。 时间序列是预处理的, 分解的, 每一段都转换成图像, 使用三种不同的已知方法: 重现 Plot, Gramian 角场, Markov Transport Field Field。 在未来预设的时间窗口中发生缉获的可能性是通过平均CNN软模层的输出量来计算的, 不同于通常对分类层输出量的考虑 。 通过设定这一可能性, 缉获预测的性能会更好。 有趣的是, 对于几乎所有病人来说, 最佳阈值与50%不同。 结果表明, 这一技术可以预测一些发病者和病人的良好结果。 但是, 需要更多的测试, 即更多的病人和更多的抓取量, 才能更好地了解这一技术的实际潜力 。