项目名称: Ni3Al基单晶合金高温强化机理与合金化设计研究
项目编号: No.U1435207
项目类型: 联合基金项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 宫声凯
作者单位: 北京航空航天大学
项目金额: 500万元
中文摘要: 未来先进燃气涡轮发动机性能的提高,材料和制造技术的贡献将占到50%~70%。Ni3Al金属间化合物基合金由于具有低密度、高承温能力的特点,有望发展成为新型超高温结构材料。但由于长期沿用传统高温合金的高温强化机理进行合金化设计,导致其诸多特点未能得到充分发挥。.本项目拟在前期研究基础上,开展Ni3Al基单晶合金高温强化机理与合金化设计研究,通过开展合金化元素在Ni3Al基单晶合金中的分布与作用、合金化元素对高有序度γ'相的高温强化效果与机制、γ'相有序度和回溶温度影响、γ/γ'相界面错配度和相界面强化效果及高温演变规律、热力耦合作用下位错运动机制、高温强约束条件下韧性γ相的强化行为等研究,揭示Ni3Al基单晶合金高温强化机理及其与传统Ni基单晶高温合金的异同;在此基础上,采用计算材料工程学的研究思路,优化成分与组织结构,发展具有更高承温能力的新一代低成本、低密度Ni3Al基单晶合金。
中文关键词: 高温合金;金属间化合物;高温强化机制;合金化设计
英文摘要: The contribution of materials and manufacturing technologies will account for 50%~70% to the improvement of the future advanced gas turbine engine. According to the lower density and higher temperature performance capability, Ni3Al intermetallic compound (IC) based superalloys are considerable to be promising new type ultra-high temperature structural materials. However, due to the lack of study on high temperature strengthening mechanism, the alloying design for such IC based superalloys is still following the traditional superalloys, which may result in some properties being lost..The aim of this project is to study the high temperature strengthening mechanism of Ni3Al based single crystal superalloy through the investigation of the participation behavior and activity of alloying elements in γ/γ' phases, strengthening effect of γ/γ' interface and evolvement of which during high temperature evolution, movement mechanism of dislocations under joint action of stress and high temperature, and the strengthening behavior of γ phase constrained by the γ/γ' interface. With a better understanding the high temperature strenthening mechanism as well as the differences between IC based single crystal superalloy and traditional Ni based single crystal superalloy, the computational and experimental study will be also carried out to develop high temperature performance Ni3Al based single crystal superalloy with lower cost and density.
英文关键词: superalloy;Intermetallic;high-temperature strengthening mechanism;alloying design