Neural operators have emerged as a new area of machine learning for learning mappings between function spaces. Recently, an expressive and efficient architecture, Fourier neural operator (FNO) has been developed by directly parameterising the integral kernel in the Fourier domain, and achieved significant success in different parametric partial differential equations. However, the Fourier transform of FNO requires the regular domain with uniform grids, which means FNO is inherently inapplicable to complex geometric domains widely existing in real applications. The eigenfunctions of the Laplace operator can also provide the frequency basis in Euclidean space, and can even be extended to Riemannian manifolds. Therefore, this research proposes a Laplace Neural Operator (LNO) in which the kernel integral can be parameterised in the space of the Laplacian spectrum of the geometric domain. LNO breaks the grid limitation of FNO and can be applied to any complex geometries while maintaining the discretisation-invariant property. The proposed method is demonstrated on the Darcy flow problem with a complex 2d domain, and a composite part deformation prediction problem with a complex 3d geometry. The experimental results demonstrate superior performance in prediction accuracy, convergence and generalisability.


翻译:神经操作器已成为在功能空间之间进行绘图的机械学习的新领域。最近,通过直接对Fourier域的内核进行直接参数化,开发了Fourier神经操作器(FORNO),直接对Fourier域的内核内部内核进行了参数化,并在不同的参数部分差异方程式中取得了重大成功。然而,FORNO的Fourier变换需要具有统一网格的常规域,这意味着FNO本质上不适用于实际应用中广泛存在的复杂几何域。Laplace操作器的机能功能也可以为Euclidean空间提供频率基础,甚至可以扩展到Riemann形元件。因此,这项研究建议建立一个Laplace神经操作器(LNO),使内核内核内核部分能够在几何域的 Laplace 频谱空间进行参数化参数化参数化。LNO打破FNO的网格限制,可以应用于任何复杂的地貌特征,同时保持离子-内变量特性。拟议的方法还可以为欧洲大陆空间的频率问题提供频率基础,甚至可以扩展到Riemannian 元体外的复合部分变异性预测结果,以复杂的三度精确度预测。

1
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月1日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员