We derive and analyze a symmetric interior penalty discontinuous Galerkin scheme for the approximation of the second-order form of the radiative transfer equation in slab geometry. Using appropriate trace lemmas, the analysis can be carried out as for more standard elliptic problems. Supporting examples show the accuracy and stability of the method also numerically, for different polynomial degrees. For discretization, we employ quad-tree grids, which allow for local refinement in phase-space, and we show exemplary that adaptive methods can efficiently approximate discontinuous solutions. We investigate the behavior of hierarchical error estimators and error estimators based on local averaging.
翻译:我们推导和分析了一种对称内部惩罚离散 Galerkin 方案,用于逼近板几何中辐射传输方程的二阶形式。使用适当的跟踪引理,分析可以像更标准的椭圆问题一样进行。支撑实例显示了该方法在不同多项式程度下的准确性和稳定性也是数值的。为了离散化,我们采用四叉树网络,这允许在相空间中进行本地细化,并且我们举例说明自适应方法可以有效逼近不连续解。我们研究了分层误差估计器和基于本地平均值的误差估计器的行为。