We combine concepts from multilevel solvers for partial differential equations (PDEs) with neural network based deep learning and propose a new methodology for the efficient numerical solution of high-dimensional parametric PDEs. An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision with the number of weights only depending logarithmically on the resolution of the finest mesh. As a consequence, approximation bounds for the solution of parametric PDEs by neural networks that are independent on the (stochastic) parameter dimension can be derived. The performance of the proposed method is illustrated on high-dimensional parametric linear elliptic PDEs that are common benchmark problems in uncertainty quantification. We find substantial improvements over state-of-the-art deep learning-based solvers. As particularly challenging examples, random conductivity with high-dimensional non-affine Gaussian fields in 100 parameter dimensions and a random cookie problem are examined. Due to the multilevel structure of our method, the amount of training samples can be reduced on finer levels, hence significantly lowering the generation time for training data and the training time of our method.
翻译:我们结合了针对偏微分方程(PDE)的多级求解器和基于神经网络的深度学习的概念,提出了一种新的方法,有效地数值求解高维参数化PDE。深入的理论分析表明,所提出的架构能够以仅依赖于最精细网格分辨率的对数组网格V循环进行任意精度的逼近。因此,可以导出与(随机)参数维度无关的神经网络求解参数化PDE的近似界限。所提出的方法的性能在高维参数化线性椭圆PDE上进行了说明,这些问题是不确定性量化中常见的基准问题。我们发现,相对于最先进的基于深度学习的求解器,有了显著的改进。作为特别具有挑战性的例子,我们研究了100个参数维度中具有高维非仿射高斯场的随机导电性,以及一个随机曲奇饼问题。由于我们的方法具有多级结构,因此可以在更精细的级别上降低训练样本的数量,从而显著降低了训练数据的生成时间和我们方法的训练时间。