项目名称: 二维球面上多项式向量场的几何性质与分支问题
项目编号: No.10871214
项目类型: 面上项目
立项/批准年度: 2009
项目学科: 金属学与金属工艺
项目作者: 赵育林
作者单位: 中山大学
项目金额: 27万元
中文摘要: 本项目研究二维球面上非齐次多项式向量场的几何性质与分支问题,已得到的主要结果有:n 次多项式向量场奇点的一般性质;球面上二次系统的各类奇点个数及相对位置;二次系统不变大圆为周期轨及极限环的条件;二次系统同宿轨及异宿轨的性质。我们还研究了三维空间中的拟齐次向量场诱导的二维球面向量场,讨论了它的Hopf 分支、Poincare分支和同(异)宿轨分支等问题,并将其应用于三维系统的研究,得到了一些有趣的结果。 除此之外,我们还研究了其它问题。例如,研究了平面系统的弱化的Hilbert十六问题,得到亏格为一的二次系统及余维四系统的闭轨的环性。研究了一类高维球面上生物数学模型。
中文关键词: 二维球面上的多项式向量场;奇点;极限环;可积性;代数曲线。
英文摘要: In this project we study the geometric properties and bifurcation problems for polynomial vector field of degree n on 2-dimensional sphere. The main results we obtained are listed as follows: 1) the geometric properties for non-homogeneous polynomial vector fields of degree n on 2-dimensional sphere, 2) The number and relative disposition of singular points of quadratic system on 2-dimensional sphere,3) the necessary and sufficient conditions which the great circle is a periodic orbit or a limit cycle, 4) the geometric properties of homoclinic (heteroclinic) loop of quadratic systems,5) Hopf bifurcation, Poincare Bifurcation and homoclinic (heteroclinic) bifurcation for some vector fields on 2-dimensional sphere induced by polynomial vector fields on R^3. We also study other related problem. For instance, we study the weakened Hilbert 16th problems for planar quadratic vector fields and obtain the cyclicity of periodic annulus for quadratic integrable systems with centers of genus one and codimension 4.
英文关键词: Polynomial vector fields on 2-dimensional sphere; Singular points; Limit cycle; Integrability; Algebraic curve.