项目名称: 辛几何与微分几何

项目编号: No.10801002

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 天文学、地球科学

项目作者: 王嵬

作者单位: 北京大学

项目金额: 16万元

中文摘要: 非线性分析与辛几何是当代数学研究中非常活跃的分支,其中包含很多研究方向。本项目拟对其中的若干问题进行研究。辛流形上哈密顿系统的研究是辛几何中的重要课题,其中有许多重要的猜想。事实上,哈密顿系统理论是研究经典力学,尤其是天体力学的重要工具。例如周期运动是天体运动的最简单方式,它对应着哈密顿系统的周期解。于是,一般哈密顿系统周期解的存在性和多重性以及稳定性等理论,无疑是很多数学家所关心的课题。我们在此项目中将研究哈密顿系统周期解的存在性与动力学性质。此外,对于紧流形上闭侧地线的研究也是许多数学家所关心的问题,我们在此项目中还研究紧流形上闭侧地线问题。

中文关键词: 哈密顿系统;周期轨道;测地线

英文摘要: Nonlinear analysis and Symplectic geometry are very active branches in modern mathematics.There are many aspects in them. We want to study some topics in this area. The study of Hamiltonian systems on Symplectic manifolds is an important topic in symplectic geometry. There are many important conjectures in this area. It is well known that the theory of Hamiltonian systems is an essential tool to study Classical Mechanics, especially Celestial Mechanics. For example, the simplest motion of planets is periodic motion. It corresponds to periodic solutions of Hamiltonian systems. Hence its no doubt that many mathematician are interested in the problem of existence, multiplicity and stability of periodic solutions of general Hamiltonian systems. On the other hand, the problem of closed geodesics on compact Riemannian manifolds also causes many mathematicians' interest. We will study the problem of closed geodesics on compact manifolds in this project.

英文关键词: Hamiltonian system; periodic orbit; closed geodesic

成为VIP会员查看完整内容
1

相关内容

【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
136+阅读 · 2018年10月8日
小贴士
相关VIP内容
【干货书】计算机科学家的数学,153页pdf
专知会员服务
170+阅读 · 2021年7月27日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
【CVPR2020】图神经网络中的几何原理连接
专知会员服务
56+阅读 · 2020年4月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员