Most existing methods for multi-source unsupervised domain adaptation (UDA) rely on a common encoder to extract domain-invariant features. However, learning such an encoder involves updating the parameters of the entire network, which makes the optimization difficult and computationally expensive, particularly when coupled with min-max objectives. Inspired by recent advances in prompt learning that adapts high-capacity models for downstream tasks in a computationally economic way, we introduce Multi-Prompt Alignment (MPA), a simple yet efficient two-stage framework for multi-source UDA. Given a source and target domain pair, MPA first trains an individual prompt to minimize the domain gap through a contrastive loss. Then, MPA derives a low-dimensional latent space through an auto-encoding process that maximizes the agreement of multiple learned prompts. The resulting embeddings further facilitate generalization to unseen domains, making MPA suitable for test time adaptation. Extensive experiments show that our method achieves state-of-the-art results on popular datasets while requiring substantially fewer tunable parameters. Specifically on DomainNet, the most challenging UDA dataset, MPA achieves the highest reported average accuracy of 54.1% with only 15.9M parameters trained.


翻译:多数现有的多源、不受监督的域适应方法(UDA)依靠一个共同的编码器来提取域变量特征。然而,学习这样一个编码器需要更新整个网络的参数,使优化变得困难,计算成本昂贵,特别是当与微量峰值目标相结合时。由于最近在迅速学习方面有所进展,以计算经济方式将高能力模型用于下游任务方面进行了适应,我们引入了多点点点匹配(MPA),这是多源UDA的一个简单而有效的两阶段框架。考虑到源和目标域对子,MPA首先训练个人迅速通过对比性损失来尽量减少域间差距。然后,MPA通过自动编码过程获得一个低维的潜质空间,使多学速率协议最大化。由此产生的嵌入进一步便利了对隐蔽域的普遍化,使MPA适合于测试时间的适应。广泛的实验表明,我们的方法在流行数据集上取得了最新的结果,同时需要大量缩放参数。具体在DomainNet上,最具挑战性的UDADA数据精确度为15.1报告的平均参数。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员