Most existing methods for multi-source unsupervised domain adaptation (UDA) rely on a common encoder to extract domain-invariant features. However, learning such an encoder involves updating the parameters of the entire network, which makes the optimization difficult and computationally expensive, particularly when coupled with min-max objectives. Inspired by recent advances in prompt learning that adapts high-capacity models for downstream tasks in a computationally economic way, we introduce Multi-Prompt Alignment (MPA), a simple yet efficient two-stage framework for multi-source UDA. Given a source and target domain pair, MPA first trains an individual prompt to minimize the domain gap through a contrastive loss. Then, MPA derives a low-dimensional latent space through an auto-encoding process that maximizes the agreement of multiple learned prompts. The resulting embeddings further facilitate generalization to unseen domains, making MPA suitable for test time adaptation. Extensive experiments show that our method achieves state-of-the-art results on popular datasets while requiring substantially fewer tunable parameters. Specifically on DomainNet, the most challenging UDA dataset, MPA achieves the highest reported average accuracy of 54.1% with only 15.9M parameters trained.
翻译:多数现有的多源、不受监督的域适应方法(UDA)依靠一个共同的编码器来提取域变量特征。然而,学习这样一个编码器需要更新整个网络的参数,使优化变得困难,计算成本昂贵,特别是当与微量峰值目标相结合时。由于最近在迅速学习方面有所进展,以计算经济方式将高能力模型用于下游任务方面进行了适应,我们引入了多点点点匹配(MPA),这是多源UDA的一个简单而有效的两阶段框架。考虑到源和目标域对子,MPA首先训练个人迅速通过对比性损失来尽量减少域间差距。然后,MPA通过自动编码过程获得一个低维的潜质空间,使多学速率协议最大化。由此产生的嵌入进一步便利了对隐蔽域的普遍化,使MPA适合于测试时间的适应。广泛的实验表明,我们的方法在流行数据集上取得了最新的结果,同时需要大量缩放参数。具体在DomainNet上,最具挑战性的UDADA数据精确度为15.1报告的平均参数。