Visual Domain Prompts (VDP) have shown promising potential in addressing visual cross-domain problems. Existing methods adopt VDP in classification domain adaptation (DA), such as tuning image-level or feature-level prompts for target domains. Since the previous dense prompts are opaque and mask out continuous spatial details in the prompt regions, it will suffer from inaccurate contextual information extraction and insufficient domain-specific feature transferring when dealing with the dense prediction (i.e. semantic segmentation) DA problems. Therefore, we propose a novel Sparse Visual Domain Prompts (SVDP) approach tailored for addressing domain shift problems in semantic segmentation, which holds minimal discrete trainable parameters (e.g. 10\%) of the prompt and reserves more spatial information. To better apply SVDP, we propose Domain Prompt Placement (DPP) method to adaptively distribute several SVDP on regions with large data distribution distance based on uncertainty guidance. It aims to extract more local domain-specific knowledge and realizes efficient cross-domain learning. Furthermore, we design a Domain Prompt Updating (DPU) method to optimize prompt parameters differently for each target domain sample with different degrees of domain shift, which helps SVDP to better fit target domain knowledge. Experiments, which are conducted on the widely-used benchmarks (Cityscapes, Foggy-Cityscapes, and ACDC), show that our proposed method achieves state-of-the-art performances on the source-free adaptations, including six Test Time Adaptation and one Continual Test-Time Adaptation in semantic segmentation.


翻译:视觉域提示(Visual Domain Prompts,VDP)已经展现了在解决不同视觉领域问题中的潜在优势。现有的方法使用在分类领域适配过的图像级别或特征级别的提示,如何适应在密集的预测领域中(如语义分割),往往在提示区域模糊和遮蔽了连续的空间细节,这将导致上下文信息提取不准确和领域特定特征转移不足,从而无法很好地应用在面对密集预测域问题时的问题。因此,我们提出了一种新颖的稀疏视觉域提示(Sparse Visual Domain Prompts,SVDP)方法,专门针对语义分割中的领域迁移问题,仅保留极少的离散可训练参数(如10%),并保留更多的空间信息。为了更好地应用SVDP,我们提出了基于不确定性引导的自适应域提示放置(Domain Prompt Placement,DPP)方法,将多个SVDP自适应地分布在数据分布距离更大的区域,以提取更多的本地领域特定知识,实现高效的跨领域学习。此外,我们设计了一种域提示更新(Domain Prompt Updating,DPU)方法,以不同程度的领域能力优化提示参数,帮助SVDP更好地适应目标领域知识。实验在广泛使用的基准测试数据集(Cityscapes,Foggy-Cityscapes和ACDC)上进行,结果显示我们的方法在面向无源自适应(source-free)的情况下,包括六种测试时间适应(Test Time Adaptation)和一种连续测试时间适应(Continual Test-Time Adaptation)在内的语义分割中实现了最先进的性能。

0
下载
关闭预览

相关内容

【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
31+阅读 · 2022年4月23日
一文了解prompt learning在计算机视觉领域进展
极市平台
7+阅读 · 2022年11月11日
NeurIPS 2022 | 稀疏且鲁棒的预训练语言模型
PaperWeekly
0+阅读 · 2022年11月11日
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
干货 | 视频显著性目标检测(文末附有完整源码)
计算机视觉战队
38+阅读 · 2019年9月3日
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年5月6日
VIP会员
相关VIP内容
【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
31+阅读 · 2022年4月23日
相关资讯
一文了解prompt learning在计算机视觉领域进展
极市平台
7+阅读 · 2022年11月11日
NeurIPS 2022 | 稀疏且鲁棒的预训练语言模型
PaperWeekly
0+阅读 · 2022年11月11日
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
干货 | 视频显著性目标检测(文末附有完整源码)
计算机视觉战队
38+阅读 · 2019年9月3日
CVPR 2019 Oral 论文解读 | 无监督域适应语义分割
AI科技评论
49+阅读 · 2019年5月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员