Typical steganography embeds secret information into images by exploiting their redundancy. Since the visual imperceptibility of secret information is a key factor in scheme evaluation, conventional methods aim to balance this requirement with embedding capacity. Consequently, integrating emerging image generation models and secret transmission has been extensively explored to achieve a higher embedding capacity. Previous works mostly focus on generating stego-images with Generative Adversarial Networks (GANs) and usually rely on pseudo-keys, namely conditions or parameters involved in the generation process, which are related to secret images. However, studies on diffusion-based coverless steganography remain insufficient. In this work, we leverage the Denoising Diffusion Implicit Model (DDIM) to generate high-quality stego-images without introducing pseudo-keys, instead employing real keys to enhance security. Furthermore, our method offers low-image-correlation real-key protection by incorporating chaotic encryption. Another core innovation is that our method requires only one-time negotiation for multiple communications, unlike prior methods that necessitate negotiation for each interaction.
翻译:暂无翻译