Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.
翻译:隐形感官分类旨在识别对上下文句所述内容表达的情绪。 以前的神经网络方法基本上忽略了一个句子中的语法结构。 在本文中,我们提出了一个新的基于目标的图形关注网络(TD-GAT), 用于侧面情绪分类, 明确使用言词之间的依赖关系。 它使用依赖性图表, 直接从侧面目标的合成背景中传播情感特征。 在我们的实验中, 我们用 GloVe 嵌入器来显示我们的方法优于多个基线。 我们还表明, 使用 BERT 演示进一步大大提升了性能 。