Energy management systems (EMS) rely on (non)-intrusive load monitoring (N)ILM to monitor and manage appliances and help residents be more energy efficient and thus more frugal. The robustness as well as the transfer potential of the most promising machine learning solutions for (N)ILM is not yet fully understood as they are trained and evaluated on relatively limited data. In this paper, we propose a new approach for load monitoring in building EMS based on dimensionality expansion of time series and transfer learning. We perform an extensive evaluation on 5 different low-frequency datasets. The proposed feature dimensionality expansion using video-like transformation and resource-aware deep learning architecture achieves an average weighted F1 score of 0.88 across the datasets with 29 appliances and is computationally more efficient compared to the state-of-the-art imaging methods. Investigating the proposed method for cross-dataset intra-domain transfer learning, we find that 1) our method performs with an average weighted F1 score of 0.80 while requiring 3-times fewer epochs for model training compared to the non-transfer approach, 2) can achieve an F1 score of 0.75 with only 230 data samples, and 3) our transfer approach outperforms the state-of-the-art in precision drop by up to 12 percentage points for unseen appliances.


翻译:能源管理系统(EMS)依靠(非)侵入性负载监测(N)ILM来监测和管理电器,帮助居民提高能源效率,从而更加节俭。最有希望的(N)ILM的机器学习解决方案的坚固性和转移潜力还没有得到完全理解,因为它们经过培训,根据相对有限的数据进行了评估。在本文件中,我们提议了一种新的方法,根据时间序列和传输学习的维度扩展,在建设EMS中进行负荷监测。我们对5个不同的低频数据集进行了广泛的评价。利用视频式的变换和资源意识深厚学习结构,拟议的特征维度扩展实现了平均加权F1分0.88,超过数据集29个设备,与最先进的成像方法相比,在计算上效率更高。我们研究了跨数据集内部传输学习的拟议方法,我们发现1)我们的方法表现为平均加权F1分0.80分,而模型培训比非转移法1分少3倍;2)通过F1级的精确度,只能通过F1分,在12度前方位数据中,将F1位数据转换为230分。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
19+阅读 · 2022年10月10日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员