Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.
翻译:联邦学习(FL)是为了保护数据隐私和实际上通过各组织之间合作培训模式,在不侵犯隐私和安全的情况下,通过合作培训模式,将孤立的数据库集中起来;然而,联邦学习(FL)面临数据空间、统计和系统差异性等各个方面的不同差异,例如,没有利益冲突的协作组织往往来自不同领域,具有来自不同特征空间的不同数据;由于非二二维和不平衡的数据分配以及各种资源限制装置,参与者还可能希望通过非二二二维和不平衡的数据分配以及各种资源限制装置,对不同个性化的地方模型进行培训。因此,提出了多种不同的FL,以解决FL的异性问题。在本次调查中,我们全面调查了数据空间、统计、系统和模型差异性差异性差异性(包括数据空间、统计、系统、系统、系统等)等各个方面的不同FL领域。我们首先概述FL的概况,包括其定义和分类。然后,我们建议根据问题的确定和学习目标,对每种类型不同FL环境差异性环境的分类进行精确分类。我们还调查了用于解决FL的异性差异性问题的转移学习方法。我们进一步提出未来研究方向和前景中的各种机会。