The methods of extracting image features are the key to many image processing tasks. At present, the most popular method is the deep neural network which can automatically extract robust features through end-to-end training instead of hand-crafted feature extraction. However, the deep neural network currently faces many challenges: 1) its effectiveness is heavily dependent on large datasets, so the computational complexity is very high; 2) it is usually regarded as a black box model with poor interpretability. To meet the above challenges, a more interpretable and scalable feature learning method, i.e., deep image feature learning with fuzzy rules (DIFL-FR), is proposed in the paper, which combines the rule-based fuzzy modeling technique and the deep stacked learning strategy. The method progressively learns image features through a layer-by-layer manner based on fuzzy rules, so the feature learning process can be better explained by the generated rules. More importantly, the learning process of the method is only based on forward propagation without back propagation and iterative learning, which results in the high learning efficiency. In addition, the method is under the settings of unsupervised learning and can be easily extended to scenes of supervised and semi-supervised learning. Extensive experiments are conducted on image datasets of different scales. The results obviously show the effectiveness of the proposed method.


翻译:提取图像特征的方法是许多图像处理任务的关键。目前,最流行的方法是使用深度神经网络,它可以通过端到端训练自动地提取强健的特征,而无需手工提取特征。然而,深度神经网络目前面临许多挑战:1)其有效性严重依赖于大型数据集,因此计算复杂度非常高;2)它通常被视为一个黑盒子,可解释性差。为了应对上述挑战,本文提出了一种更具可解释性和可扩展性的特征学习方法,即基于混合规则的深度图像特征学习(DIFL-FR),该方法结合了基于规则的模糊建模技术和深度堆叠学习策略。该方法通过逐层学习混合规则来逐步学习图像特征,因此特征学习过程可以通过生成的规则更好地解释。更重要的是,该方法的学习过程仅基于正向传播,没有反向传播和迭代学习,从而导致高效的学习效率。此外,该方法处于无监督学习的设置下,并且可以轻松扩展到有监督和半监督学习场景。针对不同规模的图像数据集进行了广泛的实验。结果明显表明了所提出方法的有效性。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2020年8月3日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员