We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.
翻译:我们提出了一种新的随机解决非线性方程式系统的方法, 它可以在某些简单的限制下找到稀疏的解决方案或解决方案。 方案只采用组件函数的梯度, 并且将布雷格曼的预测用于牛顿方程式的解析空间。 在优clidean 预测的特殊情况下, 这种方法被称为非线性卡茨马尔兹法。 此外, 如果组件函数不是负性的, 我们是在内推假设下设定优化, 并且方法会随着最近提议的软体多级多级步骤大小而降低到 SGD。 对于一般的布雷格曼预测, 我们的方法是将组件函数的梯度镜性下降与新颖的适应步骤大小相匹配。 我们证明, 在配置每种方法的精度时, 我们的方法会以小的布雷格曼距离来得出精确的解决方案, 与标准的 Polyak 步骤相比。 我们对布雷格曼的概括性预测是, 价格是, 需要通过最近提议的相形一维调的优化问题需要解决到 SGDGD 。 这通常是通过全球化的牛顿式透射线来完成。 Convergggence 。 Converence 。 Converence 在两种经典的功能中, 最终的模型中, 演示式的模型中, 演示式的功能将显示不比等相等相等相等不等不等不等不等。</s>