In this letter, we propose an integrated autonomous flight and semantic SLAM system that can perform long-range missions and real-time semantic mapping in highly cluttered, unstructured, and GPS-denied under-canopy environments. First, tree trunks and ground planes are detected from LIDAR scans. We use a neural network and an instance extraction algorithm to enable semantic segmentation in real time onboard the UAV. Second, detected tree trunk instances are modeled as cylinders and associated across the whole LIDAR sequence. This semantic data association constraints both robot poses as well as trunk landmark models. The output of semantic SLAM is used in state estimation, planning, and control algorithms in real time. The global planner relies on a sparse map to plan the shortest path to the global goal, and the local trajectory planner uses a small but finely discretized robot-centric map to plan a dynamically feasible and collision-free trajectory to the local goal. Both the global path and local trajectory lead to drift-corrected goals, thus helping the UAV execute its mission accurately and safely.
翻译:在这封信中,我们建议建立一个综合自主飞行和语义 SLAM 系统,能够在高度杂乱无章、无结构的和GPS封闭的绝缘环境中执行远程任务和实时语义制图。 首先,从LIDAR 扫描中检测到树干和地面飞机。 我们使用神经网络和实例提取算法,以便能够实时在UAV上进行语义分割。 其次,检测到的树干案例以气瓶为模型,并贯穿整个LIDAR序列。 这种语义数据关联限制既包括机器人构成的,也包括树干标志性模型。语义 SLAM 的输出被用于国家估计、规划和实时控制算法。 全球规划员依靠一个稀疏的地图来规划通往全球目标的最短的道路,而当地轨道规划员则使用一个小型但细小但离散的机器人中心地图来规划一个动态可行和无碰撞的轨道,以达到当地目标。全球路径和本地轨迹都通往漂浮目标,从而帮助UAVV准确和安全地执行任务。