This paper presents an integrated system for performing precision harvesting missions using a legged harvester. Our harvester performs a challenging task of autonomous navigation and tree grabbing in a confined, GPS denied forest environment. Strategies for mapping, localization, planning, and control are proposed and integrated into a fully autonomous system. The mission starts with a human mapping the area of interest using a custom-made sensor module. Subsequently, a human expert selects the trees for harvesting. The sensor module is then mounted on the machine and used for localization within the given map. A planning algorithm searches for both an approach pose and a path in a single path planning problem. We design a path following controller leveraging the legged harvester's capabilities for negotiating rough terrain. Upon reaching the approach pose, the machine grabs a tree with a general-purpose gripper. This process repeats for all the trees selected by the operator. Our system has been tested on a testing field with tree trunks and in a natural forest. To the best of our knowledge, this is the first time this level of autonomy has been shown on a full-size hydraulic machine operating in a realistic environment.
翻译:本文展示了使用一条腿式收割器进行精密采伐任务的综合系统。 我们的收割器在封闭的、GPS被剥夺的森林环境中执行自主导航和攫取树木的艰巨任务。 提出绘图、 本地化、 规划和控制战略, 并将其整合到一个完全自主的系统中。 任务开始时, 使用定制的传感器模块对感兴趣的区域进行人类绘图。 随后, 由一位人类专家选择采伐的树木。 传感器模块随后安装在机器上, 并在给定的地图内用于本地化。 计划算法搜索一种方法的外形和单一路径的规划问题。 我们设计了一条跟踪控制器的路径, 利用腿式采集器的能力来谈判粗糙的地形。 到达这个方向后, 机器将用通用的抓柄抓取器抓取一棵树。 这一过程重复了操作员选择的所有树木。 我们的系统已经用树干和天然林试验过试验场。 据我们所知, 这是第一次在现实环境中运行的全尺寸的液压机上显示这种自主程度。