Despite recent advances in object detection using deep learning neural networks, these neural networks still struggle to identify objects in art images such as paintings and drawings. This challenge is known as the cross depiction problem and it stems in part from the tendency of neural networks to prioritize identification of an object's texture over its shape. In this paper we propose and evaluate a process for training neural networks to localize objects - specifically people - in art images. We generate a large dataset for training and validation by modifying the images in the COCO dataset using AdaIn style transfer. This dataset is used to fine-tune a Faster R-CNN object detection network, which is then tested on the existing People-Art testing dataset. The result is a significant improvement on the state of the art and a new way forward for creating datasets to train neural networks to process art images.


翻译:尽管最近利用深层学习神经网络在物体探测方面取得了进展,但这些神经网络仍在努力在绘画和图画等艺术图像中辨别物体,这一挑战被称为交叉描述问题,其部分原因是神经网络倾向于在形状上优先鉴定物体的纹理。在本文件中,我们提议并评价一个培训神经网络的过程,以便在艺术图像中将物体(特别是人)本地化。我们通过使用AdaIn风格传输修改COCO数据集中的图像,为培训和验证生成了一个庞大的数据集。这个数据集被用来微调一个更快的R-CNN物体探测网络,然后在现有的PeopleArt测试数据集上进行测试。结果大大改进了艺术状态,并提出了创建数据集以训练神经网络处理艺术图像的新方法。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
FCN 的简单实现
AI研习社
5+阅读 · 2018年1月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
FCN 的简单实现
AI研习社
5+阅读 · 2018年1月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员