题目: The Creation and Detection of Deepfakes: A Survey

摘要: 本文综述了元学习在图像分类、自然语言处理和机器人等领域的应用。与深度学习不同,元学习使用小样本数据集,并考虑进一步改进模型泛化以获得更高的预测精度。我们将元学习模型归纳为三类:黑箱适应模型、基于相似度的方法模型和元学习过程模型。最近的应用集中在将元学习与贝叶斯深度学习和强化学习相结合,以提供可行的集成问题解决方案。介绍了元学习方法的性能比较,并讨论了今后的研究方向。

成为VIP会员查看完整内容
55

相关内容

Meta Learning,元学习,也叫 Learning to Learn(学会学习)。是继Reinforcement Learning(增强学习)之后又一个重要的研究分支。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
基于深度学习的图像超分辨率最新进展与趋势【附PDF】
人工智能前沿讲习班
15+阅读 · 2019年2月27日
热点! 虚假新闻检测综述
专知
111+阅读 · 2019年2月26日
医学图像分析最新综述:走向深度
极市平台
7+阅读 · 2019年2月25日
智能交通大数据最新论文综述-附PDF下载
专知
22+阅读 · 2019年1月21日
自动驾驶最新综述论文(31页PDF下载)
专知
118+阅读 · 2019年1月15日
106页《深度CNN-目标检测》综述进展论文
专知
4+阅读 · 2018年9月30日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关VIP内容
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
微信扫码咨询专知VIP会员