题目: The Creation and Detection of Deepfakes: A Survey

摘要: 本文综述了元学习在图像分类、自然语言处理和机器人等领域的应用。与深度学习不同,元学习使用小样本数据集,并考虑进一步改进模型泛化以获得更高的预测精度。我们将元学习模型归纳为三类:黑箱适应模型、基于相似度的方法模型和元学习过程模型。最近的应用集中在将元学习与贝叶斯深度学习和强化学习相结合,以提供可行的集成问题解决方案。介绍了元学习方法的性能比较,并讨论了今后的研究方向。

成为VIP会员查看完整内容
0
45

相关内容

Meta Learning,元学习,也叫 Learning to Learn(学会学习)。是继Reinforcement Learning(增强学习)之后又一个重要的研究分支。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

本文综述了元学习在图像分类、自然语言处理和机器人技术等领域的应用。与深度学习不同,元学习使用较少的样本数据集,并考虑进一步改进模型泛化以获得更高的预测精度。我们将元学习模型归纳为三类: 黑箱适应模型、基于相似度的方法模型和元学习过程模型。最近的应用集中在将元学习与贝叶斯深度学习和强化学习相结合,以提供可行的集成问题解决方案。介绍了元学习方法的性能比较,并讨论了今后的研究方向。

成为VIP会员查看完整内容
0
207

题目: Meta-Learning in Neural Networks: A Survey

简介: 近年来,元学习领域的兴趣急剧上升。与使用固定学习算法从头解决给定任务的传统AI方法相反,元学习旨在根据多次学习事件的经验来改善学习算法本身。这种范例为解决深度学习的许多传统挑战提供了机会,包括数据和计算瓶颈以及泛化的基本问题。在本次调查中,我们描述了当代的元学习环境。我们首先讨论元学习的定义,并将其相对于相关领域(例如转移学习,多任务学习和超参数优化)进行定位。然后,我们提出了一种新的分类法,该分类法为当今的元学习方法提供了更为全面的细分。我们调查了元学习的有希望的应用程序和成功案例,包括,强化学习和架构搜索。最后,我们讨论了未来研究的突出挑战和有希望的领域。

成为VIP会员查看完整内容
0
69

题目: Anomalous Instance Detection in Deep Learning: A Survey

摘要:

深度学习(DL)容易受到分布不均匀和对抗性示例的影响,从而导致不正确的输出。为了使DL更具有鲁棒性,最近提出了几种方法:异常检测技术来检测(并丢弃)这些异常样本。本研究试图为基于DL的应用程序异常检测的研究提供一个结构化的、全面的概述。我们根据现有技术的基本假设和采用的方法为它们提供了一个分类。我们讨论了每个类别中的各种技术,并提供了这些方法的相对优势和劣势。我们在这次调查中的目标是提供一个更容易并且更好理解的技术,这项技术是在这方面已经做过研究的,且属于不同的类别的。最后,我们强调了在DL系统中应用异常检测技术所面临的未解决的研究挑战,并提出了一些具有重要影响的未来研究方向。

成为VIP会员查看完整内容
0
75

题目: A Survey of the Recent Architectures of Deep Convolutional Neural Networks

摘要:

深度卷积神经网络(CNNs)是一种特殊类型的神经网络,在计算机视觉和图像处理等领域的多项竞赛中均有出色的表现。CNN有趣的应用领域包括图像分类与分割、目标检测、视频处理、自然语言处理、语音识别等。深度卷积神经网络强大的学习能力很大程度上是由于它使用了多个特征提取阶段,可以从数据中自动学习表示。大量数据的可用性和硬件技术的改进加速了CNNs的研究,最近出现了非常有趣的深度卷积神经网络架构。事实上,人们已经探索了几个有趣的想法来促进CNNs的发展,比如使用不同的激活和丢失函数、参数优化、正则化和架构创新。然而,深度卷积神经网络的代表性能力的主要提升是通过架构上的创新实现的。特别是利用空间和信道信息、建筑的深度和宽度以及多路径信息处理的思想得到了广泛的关注。同样,使用一组层作为结构单元的想法也越来越流行。因此,本次调查的重点是最近报道的深度CNN架构的内在分类,因此,将CNN架构的最新创新分为七个不同的类别。这七个类别分别基于空间开发、深度、多路径、宽度、特征图开发、通道提升和注意力。对CNN的组成部分、当前CNN面临的挑战和应用进行了初步的了解。

成为VIP会员查看完整内容
0
39

论文主题: Recent Advances in Deep Learning for Object Detection

论文摘要: 目标检测是计算机视觉中的基本视觉识别问题,并且在过去的几十年中已得到广泛研究。目标检测指的是在给定图像中找到具有精确定位的特定目标,并为每个目标分配一个对应的类标签。由于基于深度学习的图像分类取得了巨大的成功,因此近年来已经积极研究了使用深度学习的对象检测技术。在本文中,我们对深度学习中视觉对象检测的最新进展进行了全面的调查。通过复习文献中最近的大量相关工作,我们系统地分析了现有的目标检测框架并将调查分为三个主要部分:(i)检测组件,(ii)学习策略(iii)应用程序和基准。在调查中,我们详细介绍了影响检测性能的各种因素,例如检测器体系结构,功能学习,建议生成,采样策略等。最后,我们讨论了一些未来的方向,以促进和刺激未来的视觉对象检测研究。与深度学习。

成为VIP会员查看完整内容
0
69

论文题目: Object Detection in 20 Years: A Survey

论文简介:
目标检测作为计算机视觉中最基本和最具挑战性的问题之一,近年来受到了极大的关注。它在过去二十年的发展可以看作是计算机视觉历史的缩影。如果我们将当今的物体检测视为在深度学习的力量下的技术美学,那么将时光倒流到20年前,我们将见证冷武器时代的智慧。鉴于目标检测技术的技术发展,本文跨越了四分之一世纪的时间(从1990年代到2019年)广泛地审查了400多篇论文。本文涵盖了许多主题,包括历史上的里程碑检测器,检测数据集,度量,检测系统的基本构建块,加速技术以及最新的检测技术水平。本文还回顾了一些重要的检测应用程序,例如行人检测,面部检测,文本检测等,并对它们的挑战以及近年来的技术改进进行了深入分析。

成为VIP会员查看完整内容
0
48

论文题目: A Survey of Deep Learning-based Object Detection

论文摘要: 目标检测是计算机视觉中最重要和最具挑战性的分支之一,它已广泛应用于人们的生活中,例如监视安全性,自动驾驶等。随着用于检测任务的深度学习网络的迅速发展,对象检测器的性能得到了极大的提高。为了深入地了解目标检测的主要发展状况,在本次调查中,我们首先分析了现有典型检测模型的方法并描述了基准数据集。之后,我们以系统的方式全面概述了各种目标检测方法,涵盖了一级和二级检测器。此外,我们列出了传统和新的应用程序。还分析了对象检测的一些代表性分支。最后,我们讨论了利用这些对象检测方法来构建有效且高效的系统的体系结构,并指出了一组发展趋势,以更好地遵循最新的算法和进一步的研究。

作者介绍: Licheng Jiao 1982年获得中国上海交通大学博士学位,并分别于1984年和1990年获得西安交通大学的博士学位。 1990年至1991年,他是西安电子科技大学雷达信号处理国家重点实验室的博士后研究员。自1992年以来,焦博士一直是中国西安电子科技大学电子工程学院的教授,目前是电子工程学院的院长,也是智能感知与图像理解重点实验室的主任。 西安电子科技大学中国教育部 1992年,焦博士获得了青年科学技术奖。 1996年,他获得了中国教育部跨世纪专家基金的资助。 从1996年起,他被选为“中国第一级人才计划”的成员。2006年,他被霍英东教育基金会授予高中青年教师奖一等奖。 从2006年起,他被选为陕西省特别贡献专家。

成为VIP会员查看完整内容
0
42

论文题目: Imbalance Problems in Object Detection: A Review

论文摘要: 在本文中,我们对物体检测中的不平衡问题进行了全面回顾。 为了系统地分析问题,我们引入了两种分类法; 一个解决问题,另一个解决方案。 按照问题的分类法,我们深入讨论每个问题,并对文献中的解决方案提出一个统一而又批判性的观点。 此外,我们确定了有关现有不平衡问题以及以前未讨论过的不平衡问题的主要开放问题。 此外,为了使我们的评论保持最新,我们提供了一个随附的网页。

成为VIP会员查看完整内容
0
36

Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is "deepfake". Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.

0
4
下载
预览

Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

0
39
下载
预览
小贴士
相关VIP内容
专知会员服务
207+阅读 · 2020年5月8日
相关论文
Anomalous Instance Detection in Deep Learning: A Survey
Saikiran Bulusu,Bhavya Kailkhura,Bo Li,Pramod K. Varshney,Dawn Song
23+阅读 · 2020年3月16日
Deep Learning for Deepfakes Creation and Detection
Thanh Thi Nguyen,Cuong M. Nguyen,Dung Tien Nguyen,Duc Thanh Nguyen,Saeid Nahavandi
4+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Zhengxia Zou,Zhenwei Shi,Yuhong Guo,Jieping Ye
39+阅读 · 2019年5月13日
A Survey of the Recent Architectures of Deep Convolutional Neural Networks
Asifullah Khan,Anabia Sohail,Umme Zahoora,Aqsa Saeed Qureshi
36+阅读 · 2019年1月17日
The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery
Jacob Shermeyer,Adam Van Etten
3+阅读 · 2018年12月10日
LaneNet: Real-Time Lane Detection Networks for Autonomous Driving
Ze Wang,Weiqiang Ren,Qiang Qiu
3+阅读 · 2018年7月4日
Han Hu,Jiayuan Gu,Zheng Zhang,Jifeng Dai,Yichen Wei
3+阅读 · 2018年6月14日
Pengkai Zhu,Hanxiao Wang,Tolga Bolukbasi,Venkatesh Saligrama
5+阅读 · 2018年3月19日
Alexander Wong,Mohammad Javad Shafiee,Francis Li,Brendan Chwyl
7+阅读 · 2018年2月19日
Daniel Oñoro-Rubio,Roberto J. López-Sastre,Carolina Redondo-Cabrera,Pedro Gil-Jiménez
5+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员