This paper is concerned with noisy matrix completion--the problem of recovering a low-rank matrix from partial and noisy entries. Under uniform sampling and incoherence assumptions, we prove that a tuning-free square-root matrix completion estimator (square-root MC) achieves optimal statistical performance for solving the noisy matrix completion problem. Similar to the square-root Lasso estimator in high-dimensional linear regression, square-root MC does not rely on the knowledge of the size of the noise. While solving square-root MC is a convex program, our statistical analysis of square-root MC hinges on its intimate connections to a nonconvex rank-constrained estimator.
翻译:本文所关注的是一个吵闹的矩阵完成问题 — — 从局部和吵闹的条目中回收低级矩阵的问题。 在统一的抽样和不一致假设下,我们证明一个无调的平地矩阵完成估计仪(quare-root MC)在解决吵闹的矩阵完成问题时达到了最佳统计性能。 与高维线回归中的平地Lasso测算仪相似,平地光谱监测仪并不依赖于对噪音大小的了解。 尽管解决平地的MC是一个连接程序,但我们对平地模型的统计分析取决于它与非凝固的排位限制估计仪的亲密关系。