We propose a deep importance sampling method that is suitable for estimating rare event probabilities in high-dimensional problems. We approximate the optimal importance distribution in a general importance sampling problem as the pushforward of a reference distribution under a composition of order-preserving transformations, in which each transformation is formed by a squared tensor-train decomposition. The squared tensor-train decomposition provides a scalable ansatz for building order-preserving high-dimensional transformations via density approximations. The use of composition of maps moving along a sequence of bridging densities alleviates the difficulty of directly approximating concentrated density functions. To compute expectations over unnormalized probability distributions, we design a ratio estimator that estimates the normalizing constant using a separate importance distribution, again constructed via a composition of transformations in tensor-train format. This offers better theoretical variance reduction compared with self-normalized importance sampling, and thus opens the door to efficient computation of rare event probabilities in Bayesian inference problems. Numerical experiments on problems constrained by differential equations show little to no increase in the computational complexity with the event probability going to zero, and allow to compute hitherto unattainable estimates of rare event probabilities for complex, high-dimensional posterior densities.
翻译:我们提出了一种适用于估计高度问题稀有事件概率的极重要抽样方法。我们将一般重要抽样问题的最佳重要性分布作为一般重要抽样问题的最佳重要分布方法,在秩序保存变异的构成下推动参考分布,在这种变异中,每种变异都是由正方格的抗拉力干线分解形成。平方格的抗拉力干线分解为通过密度近似值来建立秩序保持高维度变异提供了一种可缩放的肛门。使用沿连接密度问题序列移动的地图组成减少了直接接近接近集中密度功能的困难。为了对非正常化概率分布的预期进行推移,我们设计了一个比率估计器,用单方位重力分布来估计常态的常态。这比自我调节重要性取样更能减少理论差异,从而打开了有效计算贝伊斯拉伊地区罕见事件概率问题的大门。对于由差异方程式压缩集中密度函数限制的问题的量化实验,在高位性方位估计中几乎没有甚高的概率,从而可以进行高的概率,从而推算出高度的概率,从而推算出高度的复杂度事件。