The purpose of this work is the development of space-time discretization schemes for phase-field optimal control problems. Specifically in the optimal control minimization problem, a tracking-type cost functional is minimized to steer the crack via the phase-field variable into a desired pattern. To achieve such optimal solutions, Neumann type boundary conditions need to be determined. First, a time discretization of the forward problem is derived using a discontinuous Galerkin formulation. Here, a challenge is to include regularization terms and the crack irreversibility constraint. The optimal control setting is formulated by means of the Lagrangian approach from which the primal part, adjoint, tangent and adjoint Hessian are derived. Herein the overall Newton algorithm is based on a reduced approach by eliminating the state constraint, namely the displacement and phase-field unknowns, but keeping the control variable as the only unknown. From the low-order discontinuous Galerkin discretization, adjoint time-stepping schemes are finally obtained. Both our formulation and algorithmic developments are substantiated and illustrated with six numerical experiments.


翻译:这项工作的目的是为分阶段最佳控制问题制定时间分解计划,具体来说,在最佳控制最小化问题中,将跟踪型成本功能降到最低程度,以引导通过阶段场变量的裂缝形成理想的模式。为了实现这种最佳解决方案,需要确定Neumann型边界条件。首先,利用不连续的Galerkin配方,得出远期问题的分解时间。这里,一个挑战是包括正规化条件和快递不可逆转性限制。最佳控制设置是通过拉格朗加办法制定的,从中得出原始部分,即联合的、正切的和联合的赫森。这里,整个牛顿算法的基础是通过减少方法,消除国家限制,即流离失所和阶段场未知,但将控制变量作为唯一未知变量保留下来。从低顺序不连续的Galerkin分解中,最终获得了联合时间步骤。我们制定和算法的发展都得到了六个数字实验的证实和说明。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Representations of Mean-Field Variational Inference
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员