The formulation of Mean Field Games (MFG) typically requires continuous differentiability of the Hamiltonian in order to determine the advective term in the Kolmogorov--Fokker--Planck equation for the density of players. However in many cases of practical interest, the underlying optimal control problem may exhibit bang-bang controls, which typically lead to nondifferentiable Hamiltonians. We develop the analysis and numerical analysis of stationary MFG for the general case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians. In particular, we propose a generalization of the MFG system as a Partial Differential Inclusion (PDI) based on interpreting the derivative of the Hamiltonian in terms of subdifferentials of convex functions. We establish existence of a weak solution to the MFG PDI system, and we further prove uniqueness under a similar monotonicity condition to the one considered by Lasry and Lions. We then propose a monotone finite element discretization of the problem, and we prove strong $H^1$-norm convergence of the approximations to the value function and strong $L^q$-norm convergence of the approximations of the density function. We illustrate the performance of the numerical method in numerical experiments featuring nonsmooth solutions.
翻译:平均田径运动(MFG)的设计通常需要汉密尔顿人的持续差异,以便确定科尔莫戈罗夫-福克克-普朗克方程式中对球员密度的适应性术语。然而,在许多实际感兴趣的情况下,潜在的最佳控制问题可能表现出砰砰砰控制,这通常会导致无差别的汉密尔顿人。我们为Convex、Lipschitz、但可能无法区分的汉密尔顿人的一般情况对固定的MFG进行分析和数字分析。特别是,我们建议根据对汉密尔顿人衍生物的相对差异性功能的解释,将MFG系统普遍化为部分差异性包容(PDI)。我们确定MFG PDI系统存在薄弱的解决方案,这通常会导致无差别的汉密尔顿人汉密尔顿人。我们进一步证明,在类似单一的单一条件下,固定的MFGG(MG)系统的独特性条件下,我们提出了这一问题的单一的限定性要素分解。我们证明MFG(PDI)系统在部分的分辨中具有部分差异性融合性。我们证明,近似GAL-G(GALQ)的接近性标准的数值的不趋同G(UI)的磁性)的磁性标准。