Graph pooling is a crucial operation for encoding hierarchical structures within graphs. Most existing graph pooling approaches formulate the problem as a node clustering task which effectively captures the graph topology. Conventional methods ask users to specify an appropriate number of clusters as a hyperparameter, then assume that all input graphs share the same number of clusters. In inductive settings where the number of clusters can vary, however, the model should be able to represent this variation in its pooling layers in order to learn suitable clusters. Thus we propose GMPool, a novel differentiable graph pooling architecture that automatically determines the appropriate number of clusters based on the input data. The main intuition involves a grouping matrix defined as a quadratic form of the pooling operator, which induces use of binary classification probabilities of pairwise combinations of nodes. GMPool obtains the pooling operator by first computing the grouping matrix, then decomposing it. Extensive evaluations on molecular property prediction tasks demonstrate that our method outperforms conventional methods.
翻译:图形集合是图形中编码等级结构的关键操作。 大多数现有的图形集合方法将问题表述为有效捕捉图形地形的节点组合任务。 常规方法要求用户指定一个适当数量的组群作为超参数, 然后假设所有输入图都共享相同数目的组群。 但是, 在嵌入式设置中, 组群的数量可以变化, 模型应该能够代表其集合层中的这种变化, 以便学习合适的组群 。 因此, 我们提议了 GMPool, 这是一种新型的可区分的图形集合结构, 它将自动确定基于输入数据的组群的适当数目 。 主要直觉包含一个组合矩阵, 定义为集合操作器的四方形形式, 以诱导使用结点对齐组合的二元分类概率。 GMPool 通过首先计算组合矩阵, 获得集合操作器的集合操作器, 然后进行分解。 对分子属性预测任务进行的广泛评估表明, 我们的方法超过了常规方法 。