The joint problem of reconstruction / feature extraction is a challenging task in image processing. It consists in performing, in a joint manner, the restoration of an image and the extraction of its features. In this work, we firstly propose a novel nonsmooth and nonconvex variational formulation of the problem. For this purpose, we introduce a versatile generalised Gaussian prior whose parameters, including its exponent, are space-variant. Secondly, we design an alternating proximal-based optimisation algorithm that efficiently exploits the structure of the proposed nonconvex objective function. We also analyze the convergence of this algorithm. As shown in numerical experiments conducted on joint segmentation/deblurring tasks, the proposed method provides high-quality results.
翻译:重建/地物提取的共同问题是图像处理中的一项艰巨任务,包括以共同方式恢复图像和提取其特征。在这项工作中,我们首先提议对问题采用新的非光和非光化的变式表述方式。为此,我们引入了多功能的通用高斯语,其参数,包括其前导值,是空间变量。第二,我们设计了一种交替的基于准成像的优化算法,有效地利用了拟议的非convex目标功能的结构。我们还分析了这种算法的趋同。正如在联合分割/脱光任务上进行的数字实验所显示的那样,拟议方法提供了高质量的结果。