The implementation of Full Waveform Inversion (FWI) requires the a priori choice of a number of "design parameters", such as the positions of sensors for the actual measurements and one (or more) regularisation weights. In this paper we describe a novel algorithm for determining these design parameters automatically from a set of training images, using a (supervised) bilevel learning approach. In our algorithm, the upper level objective function measures the quality of the reconstructions of the training images, where the reconstructions are obtained by solving the lower level optimisation problem - in this case FWI. Our algorithm employs (variants of) the BFGS quasi-Newton method to perform the optimisation at each level, and thus requires the repeated solution of the forward problem - here taken to be the Helmholtz equation. The paper focuses on the implementation of the algorithm. The novel contributions are: (i) an adjoint-state method for the efficient computation of the upper-level gradient; (ii) a complexity analysis for the bilevel algorithm, which counts the number of Helmholtz solves needed and shows this number is independent of the number of design parameters optimised; (iii) a bilevel frequency-continuation strategy that helps avoiding convergence to a spurious stationary point; (iv) an effective preconditioning strategy for iteratively solving the linear systems required at each step of the bilevel algorithm; (v) a smoothed extraction process for point values of the discretised wavefield, necessary for ensuring a smooth upper level objective function. The advantage of our algorithm is demonstrated on a problem derived from the standard Marmousi test problem.
翻译:执行全波变换( FWI) 需要先验地选择一些“ 设计参数 ”, 例如实际测量传感器的位置和一个( 或更多) 常规加权数。 在本文中, 我们描述一个新算法, 使用双级学习方法, 从一组培训图像中自动确定这些设计参数。 在我们的算法中, 上层目标函数测量了培训图像重建的质量, 重建是通过解决较低水平优化问题获得的。 在FWI 中, 我们的算法使用BFGS 准牛顿的高级方法( 变量) 在每个级别进行优化, 因而需要反复解决前方问题 — 此处是 Helmholtz 方程式。 本文侧重于算法的落实。 新的贡献是:(i) 高效计算上层梯度的连接状态方法;(ii) 双级算法的复杂程度分析, 计算Helmholtz 的解算值的( 准牛顿级级), 并显示这一数值的上方位, 选择一个设计参数的精度的精度测试策略的精度。