Offline reinforcement learning (RL) aims to infer sequential decision policies using only offline datasets. This is a particularly difficult setup, especially when learning to achieve multiple different goals or outcomes under a given scenario with only sparse rewards. For offline learning of goal-conditioned policies via supervised learning, previous work has shown that an advantage weighted log-likelihood loss guarantees monotonic policy improvement. In this work we argue that, despite its benefits, this approach is still insufficient to fully address the distribution shift and multi-modality problems. The latter is particularly severe in long-horizon tasks where finding a unique and optimal policy that goes from a state to the desired goal is challenging as there may be multiple and potentially conflicting solutions. To tackle these challenges, we propose a complementary advantage-based weighting scheme that introduces an additional source of inductive bias: given a value-based partitioning of the state space, the contribution of actions expected to lead to target regions that are easier to reach, compared to the final goal, is further increased. Empirically, we demonstrate that the proposed approach, Dual-Advantage Weighted Offline Goal-conditioned RL (DAWOG), outperforms several competing offline algorithms in commonly used benchmarks. Analytically, we offer a guarantee that the learnt policy is never worse than the underlying behaviour policy.


翻译:离线强化学习(RL)旨在推断仅使用离线数据集的顺序决策政策。这是一个特别困难的设置,特别是当学习在特定情景下实现多种不同的目标和结果时,只得到微薄的回报。关于通过监督学习而从离线学习目标确定的政策,以往的工作表明,优势加权日志损失保证了单一式政策改进。在这项工作中,尽管有其好处,但这一方法仍然不足以充分解决分配转移和多模式问题。在长期任务中,后者特别严重,因为找到从状态到预期目标的独特和最佳政策具有挑战性,因为可能存在多重和潜在冲突的解决办法。为了应对这些挑战,我们提议了一个基于优势的补充加权办法,提出一个诱导偏差的附加来源:鉴于基于价值对状态空间的分割,预期导致目标区域更容易达到,而与最终目标相比,行动的贡献进一步增加。我们设想,拟议的方法、双向顶端和最佳政策将具有挑战性,因为可能存在多重和潜在冲突性的解决办法。为了应对这些挑战,我们提议了一个基于优势的权衡优势加权政策,因此,我们从未采用更糟糕的分析方法。</s>

1
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2023年1月19日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员