Graph search planning algorithms for navigation typically rely heavily on heuristics to efficiently plan paths. As a result, while such approaches require no training phase and can directly plan long horizon paths, they often require careful hand designing of informative heuristic functions. Recent works have started bypassing hand designed heuristics by using machine learning to learn heuristic functions that guide the search algorithm. While these methods can learn complex heuristic functions from raw input, they i) require a significant training phase and ii) do not generalize well to new maps and longer horizon paths. Our contribution is showing that instead of learning a global heuristic estimate, we can define and learn local heuristics which results in a significantly smaller learning problem and improves generalization. We show that using such local heuristics can reduce node expansions by 2-20x while maintaining bounded suboptimality, are easy to train, and generalize to new maps & long horizon plans.
翻译:导航的图形搜索规划算法通常严重依赖外观来有效规划路径。 因此,虽然这些方法不需要培训阶段,而且可以直接规划远距路径,但往往需要谨慎的手来设计信息丰富的外观功能。 最近的工作已经开始绕过手工设计的外观功能,利用机器学习学习来学习引导搜索算法的外观功能。 虽然这些方法可以从原始输入中学习复杂的外观功能,但它们需要一个重要的培训阶段,并且 (二) 无法向新的地图和长地平线路径概括。 我们的贡献表明,我们不用学习全球外观估计,我们可以定义和学习本地外观学,从而导致学习问题小得多,并改进通俗化。 我们表明,使用这些本地外观可以将节点扩展减少2-20x,同时保持捆绑的亚光度,容易培训,并普遍化为新的地图和长地平线计划。</s>