Adding fiducial markers to a scene is a well-known strategy for making visual localization algorithms more robust. Traditionally, these marker locations are selected by humans who are familiar with visual localization techniques. This paper explores the problem of automatic marker placement within a scene. Specifically, given a predetermined set of markers and a scene model, we compute optimized marker positions within the scene that can improve accuracy in visual localization. Our main contribution is a novel framework for modeling camera localizability that incorporates both natural scene features and artificial fiducial markers added to the scene. We present optimized marker placement (OMP), a greedy algorithm that is based on the camera localizability framework. We have also designed a simulation framework for testing marker placement algorithms on 3D models and images generated from synthetic scenes. We have evaluated OMP within this testbed and demonstrate an improvement in the localization rate by up to 20 percent on four different scenes.
翻译:在场景中添加基准标记是提高视觉定位算法稳健性的常用策略。传统上,这些标记位置由熟悉视觉定位技术的人员手动选择。本文探讨自动放置场景内基准标记的问题。具体而言,给定预先确定的一组标记和一个场景模型,我们计算出在场景内优化的基准标记位置,从而提高视觉定位的准确度。我们的主要贡献是提出了一个新颖的相机本地化模型框架,该框架结合了自然场景特征和人工添加到场景中的基准标记。我们提出了基于相机本地化框架的贪心算法——优化基准标记放置算法(OMP)。我们还设计了一个模拟框架,用于在由合成场景生成的3D模型和图像上测试基准标记放置算法。我们在这个测试平台上评估了OMP,并在四个不同的场景中展示了定位率最高可提高20%的结果。