In this work, we propose a deep neural network method to perform nonparametric regression for functional data. The proposed estimators are based on sparsely connected deep neural networks with ReLU activation function. By properly choosing network architecture, our estimator achieves the optimal nonparametric convergence rate in empirical norm. Under certain circumstances such as trigonometric polynomial kernel and a sufficiently large sampling frequency, the convergence rate is even faster than root-$n$ rate. Through Monte Carlo simulation studies we examine the finite-sample performance of the proposed method. Finally, the proposed method is applied to analyze positron emission tomography images of patients with Alzheimer disease obtained from the Alzheimer Disease Neuroimaging Initiative database.
翻译:在这项工作中,我们建议了一种深神经网络方法,用于对功能数据进行非对称回归。提议的测算器基于连接极少的深神经网络,具有RELU激活功能。通过适当选择网络结构,我们的测算器在经验规范中实现了最佳的非对称融合率。在某些情况下,如三角测量多球内核和足够大取样频率,趋同率甚至比根-美元比率还要快。通过蒙特卡洛模拟研究,我们研究了拟议方法的有限抽样性能。最后,拟议方法用于分析从阿尔茨海默氏疾病神经成像倡议数据库获得的老年痴呆病患者的正电子排放图象。