We propose a sensitivity analysis for Synthetic Control (SC) treatment effect estimates to interrogate the assumption that the SC method is well-specified, namely that choosing weights to minimize pre-treatment prediction error yields accurate predictions of counterfactual post-treatment outcomes. Our data-driven procedure recovers the set of treatment effects consistent with the assumption that the misspecification error incurred by the SC method is at most the observable misspecification error incurred when using the SC estimator to predict the outcomes of some control unit. We show that under one definition of misspecification error, our procedure provides a simple, geometric motivation for comparing the estimated treatment effect to the distribution of placebo residuals to assess estimate credibility. When we apply our procedure to several canonical studies that report SC estimates, we broadly confirm the conclusions drawn by the source papers.


翻译:我们提议对合成控制(SC)处理效果估计进行敏感度分析,以质询以下假设:SC方法非常具体,即选择权重以尽量减少预处理预测错误,可以准确预测反实际情况处理后的结果。我们的数据驱动程序回收了一套治疗效果,这符合以下假设:在使用SC测算器预测某个控制单位的结果时,SC方法发生的误差最多是可观察到的误差。我们表明,根据一个误差定义,我们的程序提供了一个简单、几何性动机,用以比较估计治疗效果与分配安慰剂残留评估可信度的估计。当我们运用程序对报告SC估计的数种理论研究时,我们广泛肯定源文件得出的结论。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年3月30日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员