Many smartphone applications use inertial measurement units (IMUs) to sense movement, but the use of these sensors for pedestrian localization can be challenging due to their noise characteristics. Recent data-driven inertial odometry approaches have demonstrated the increasing feasibility of inertial navigation. However, they still rely upon conventional smartphone orientation estimates that they assume to be accurate, while in fact these orientation estimates can be a significant source of error. To address the problem of inaccurate orientation estimates, we present a two-stage, data-driven pipeline using a commodity smartphone that first estimates device orientations and then estimates device position. The orientation module relies on a recurrent neural network and Extended Kalman Filter to obtain orientation estimates that are used to then rotate raw IMU measurements into the appropriate reference frame. The position module then passes those measurements through another recurrent network architecture to perform localization. Our proposed method outperforms state-of-the-art methods in both orientation and position error on a large dataset we constructed that contains 20 hours of pedestrian motion across 3 buildings and 15 subjects.
翻译:许多智能手机应用程序使用惯性测量单位来感知运动,但由于噪音特性,使用这些传感器进行行人定位可能具有挑战性。最近的数据驱动惯性惯性测量方法表明惯性导航的可行性越来越大。然而,它们仍然依赖常规智能手机定向估计,它们认为这些估计是准确的,而事实上,这些定向估计可能是一个重大误差的来源。为了解决方向估计不准确的问题,我们用一种商品智能手机提出了一个由数据驱动的双阶段管道,首先估计设备方向,然后估计设备位置。定向模块依靠一个经常性神经网络和扩展的卡尔曼过滤器来获得定向估计,然后将原始IMU测量结果旋转到适当的参考框架。该位置模块随后通过另一个经常性网络结构进行这些测量,以进行本地化。我们提出的方法在方向和位置错误两方面都超越了我们建造的大型数据集上的最新方法,该数据集包含3座建筑物和15个主题的20小时行人运动。