Optimal transport (OT) has generated much recent interest by its capability of finding mappings that transport mass from one distribution to another, and found useful roles in machine learning tasks such as unsupervised learning, domain adaptation and transfer learning. On the other hand, in many applications data are generated by complex mechanisms involving convoluted spaces of functions, curves and surfaces in high dimensions. Functional data analysis provides a useful framework of treatment for such domains. In this paper we introduce a novel formulation of optimal transport problem in functional spaces and develop an efficient learning algorithm for finding the stochastic map between functional domains. We apply our method to synthetic datasets and study the geometric properties of the transport map. Experiments on real-world datasets of robot arm trajectories and digit numbers further demonstrate the effectiveness of our method on applications of domain adaptation and generative modeling.
翻译:最佳运输(OT)最近引起了人们很大的兴趣,因为它能够找到将质量从一个分布区迁移到另一个分布区,并在机器学习任务(如无人监督的学习、领域适应和转移学习)中发现有用的作用。另一方面,在许多应用方面,数据是由涉及功能、曲线和地表高度的复杂空间的复杂机制生成的。功能数据分析为这类领域的处理提供了一个有用的框架。在本文件中,我们引入了功能空间最佳运输问题的新构思,并开发了一种有效的学习算法,以寻找功能领域之间的随机地图。我们运用了我们的方法来合成数据集并研究运输地图的几何特性。机器人臂轨迹和数字数字的实时数据集实验进一步证明了我们应用域适应和基因模型的方法的有效性。