Deep neural networks are transforming fields ranging from computer vision to computational medicine, and we recently extended their application to the field of phase-change heat transfer by introducing theory-trained neural networks (TTNs) for a solidification problem \cite{TTN}. Here, we present general, in-depth, and empirical insights into theory-training networks for learning the solution of highly coupled differential equations. We analyze the deteriorating effects of the oscillating loss on the ability of a network to satisfy the equations at the training data points, measured by the final training loss, and on the accuracy of the inferred solution. We introduce a theory-training technique that, by leveraging regularization, eliminates those oscillations, decreases the final training loss, and improves the accuracy of the inferred solution, with no additional computational cost. Then, we present guidelines that allow a systematic search for the network that has the optimal training time and inference accuracy for a given set of equations; following these guidelines can reduce the number of tedious training iterations in that search. Finally, a comparison between theory-training and the rival, conventional method of solving differential equations using discretization attests to the advantages of theory-training not being necessarily limited to high-dimensional sets of equations. The comparison also reveals a limitation of the current theory-training framework that may limit its application in domains where extreme accuracies are necessary.


翻译:深心神经网络正在改变从计算机视野到计算医学的各个领域,我们最近通过引入理论培训神经网络(TTNs),将它们的应用扩大到了阶段变化热传输领域。在这里,我们提出了理论培训神经网络(TTNs),用于固化问题。我们提出了理论培训网络的一般、深入和经验见解,用于学习高度混合差异方程式的解决方案。我们分析了振动性损失对网络在培训数据点满足方程式的能力的恶化影响,根据最终培训损失和推断解决方案的准确性来衡量。我们引入了理论培训技术,通过利用正规化,消除这些振动,减少最终培训损失,提高推断解决方案的准确性,不增加计算成本。然后,我们提出了指导方针,以便系统搜索具有最佳培训时间的网络和特定方程式的推断准确性;遵循这些指导方针,可以减少在搜索中进行重复培训的次数。最后,我们将必要的理论培训与对等模型的对等化加以比较,同时将理论和对等化的对等性理论加以比较,这样可以证明目前不同方程式的对等度的精确性,而这种对等化的对等性也能够证明目前不同方程式的对等性,对等化的对等化的对等化的对等法的对等性,对等性将演示法的对准性将证明,对准性对准性将使得对等性在目前方方方方程式的对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对性对准性对面性对性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对准性对

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
CDiNN -Convex Difference Neural Networks
Arxiv
0+阅读 · 2021年3月31日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员