Neural networks are important tools for data-intensive analysis and are commonly applied to model non-linear relationships between dependent and independent variables. However, neural networks are usually seen as "black boxes" that offer minimal information about how the input variables are used to predict the response in a fitted model. This article describes the \pkg{NeuralSens} package that can be used to perform sensitivity analysis of neural networks using the partial derivatives method. Functions in the package can be used to obtain the sensitivities of the output with respect to the input variables, evaluate variable importance based on sensitivity measures and characterize relationships between input and output variables. Methods to calculate sensitivities are provided for objects from common neural network packages in \proglang{R}, including \pkg{neuralnet}, \pkg{nnet}, \pkg{RSNNS}, \pkg{h2o}, \pkg{neural}, \pkg{forecast} and \pkg{caret}. The article presents an overview of the techniques for obtaining information from neural network models, a theoretical foundation of how are calculated the partial derivatives of the output with respect to the inputs of a multi-layer perceptron model, a description of the package structure and functions, and applied examples to compare \pkg{NeuralSens} functions with analogous functions from other available \proglang{R} packages.


翻译:神经网络是数据密集分析的重要工具{神经网络,通常用于模拟非线性的关系。然而,神经网络通常被视为“黑盒子”,提供最起码的信息,说明如何使用输入变量来预测适合模型中的反应。本文章描述了可用于使用部分衍生物方法对神经网络进行敏感分析的\pkk{NeuralSens}包件。包中的功能可用于获取投入变量产出的敏感性,根据敏感性措施评估变量的重要性并描述投入和产出变量之间的关系。对于在\ proglang{R} 中常见神经网络包中的物体,提供了计算敏感性的方法,包括\ pkkg{ nuralnet},\pkkk{nent},\pkg{h2o},\pkkkk{h{nuror},\pkkkk{nor{nor},\kkg{formax} 。文章概述了从神经网络模型模型中获取信息的技术,以及输入到输入和输入输出输出工具的工具。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年3月31日
CDiNN -Convex Difference Neural Networks
Arxiv
0+阅读 · 2021年3月31日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
相关论文
Arxiv
0+阅读 · 2021年3月31日
CDiNN -Convex Difference Neural Networks
Arxiv
0+阅读 · 2021年3月31日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2018年4月30日
Top
微信扫码咨询专知VIP会员