This paper describes a flexible framework for generalized low-rank tensor estimation problems that includes many important instances arising from applications in computational imaging, genomics, and network analysis. The proposed estimator consists of finding a low-rank tensor fit to the data under generalized parametric models. To overcome the difficulty of non-convexity in these problems, we introduce a unified approach of projected gradient descent that adapts to the underlying low-rank structure. Under mild conditions on the loss function, we establish both an upper bound on statistical error and the linear rate of computational convergence through a general deterministic analysis. Then we further consider a suite of generalized tensor estimation problems, including sub-Gaussian tensor PCA, tensor regression, and Poisson and binomial tensor PCA. We prove that the proposed algorithm achieves the minimax optimal rate of convergence in estimation error. Finally, we demonstrate the superiority of the proposed framework via extensive experiments on both simulated and real data.
翻译:本文介绍了普遍低级别粒子估计问题的灵活框架,其中包括计算成像、基因组学和网络分析应用中出现的许多重要实例。拟议的估计数字包括找到与一般参数模型下的数据相适应的低级别粒子。为了克服这些问题中不协调的困难,我们采用了一种统一的预测梯度下降方法,适应基本的低级别结构。在损失功能的温和条件下,我们通过一般确定性分析确定了统计错误的上限和计算趋同的线性速度。然后,我们进一步考虑一套普遍高水平估算问题,包括亚高收入单甲醚、高值回归、Poisson和binomial Exmor 五氯苯甲醚。我们证明拟议的算法在估计误差方面达到了最小最大最佳趋同率。最后,我们通过对模拟数据和真实数据进行广泛试验,显示了拟议框架的优越性。