Kernel methods for solving partial differential equations on surfaces have the advantage that those methods work intrinsically on the surface and yield high approximation rates if the solution to the partial differential equation is smooth enough. Naive implementations of kernel based methods suffer, however, from the cubic complexity in the degrees of freedom. Localized Lagrange bases have proven to overcome this computational complexity to some extend. In this article we present a rigorous proof for a geometric multigrid method with $\tau\ge 2$-cycle for elliptic partial differential equations on surfaces which is based on precomputed Lagrange basis functions. Our new multigrid provably works on quasi-uniform point clouds on the surface and hence does not require a grid-structure. Moreover, the computational cost scales log-linear in the degrees of freedom.
翻译:解决表面部分差异方程式的内核方法的优点是,这些方法在表面具有内在作用,如果部分差异方程式的解决方案足够平滑,则会产生高近似率。但是,以内核为基础的方法在自由度的立方复杂度上受到自然应用的影响。本地化的拉格朗基底已经证明已经克服了这种计算复杂性,甚至有些延伸。在本篇文章中,我们提出了一个严格的证据,证明以2美元为单位的几何多格方法,以基于预先计算拉格朗基函数的表面的椭圆部分差异方程式为基础,以2美元为周期,用于极离子部分差异方程式。我们新的多电网在表面的准统一点云上工作,因此不需要电网结构。此外,计算成本表在自由度上的线性计算成本。</s>