We study 1D discrete Schr\"odinger operators $H$ with integer-valued potential and show that, $(i)$, invertibility (in fact, even just Fredholmness) of $H$ always implies invertibility of its half-line compression $H_+$ (zero Dirichlet boundary condition, i.e. matrix truncation). In particular, the Dirichlet eigenvalues avoid zero -- and all other integers. We use this result to conclude that, $(ii)$, the finite section method (approximate inversion via finite and growing matrix truncations) is applicable to $H$ as soon as $H$ is invertible. The same holds for $H_+$.
翻译:我们研究了1D离散 Schr\'dinger操作员, 具有整数估价潜力的美元, 并表明, $(一), 不可逆(事实上,甚至只是Fredholmness) $(H) 总是意味着其半线压缩 $H $(零dirichlet边界条件,即矩阵脱轨)的不可逆性。 特别是, Dirichlet egenvalue 避免了零 - - - - 以及所有其他整数。 我们利用这一结果得出结论, $(二) 美元, 有限区段法(通过有限和不断增长的矩阵轨迹接近的可逆性) 适用于$H $, 只要美元是不可逆的。 同样的, $H 美元也适用 。