In this paper we study the sampling recovery problem for certain relevant multivariate function classes which are not compactly embedded into $L_\infty$. Recent tools relating the sampling numbers to the Kolmogorov widths in the uniform norm are therefore not applicable. In a sense, we continue the research on the small smoothness problem by considering "very" small smoothness in the context of Besov and Triebel-Lizorkin spaces with dominating mixed regularity. There is not much known on the recovery of such functions except of an old result by Oswald in the univariate situation. As a first step we prove the uniform boundedness of the $\ell_p$-norm of the Faber-Schauder coefficients in a fixed level. Using this we are able to control the error made by a (Smolyak) truncated Faber-Schauder series in $L_q$ with $q<\infty$. It turns out that the main rate of convergence is sharp. As a consequence we obtain results also for $S^1_{1,\infty}F([0,1]^d)$, a space which is ``close'' to the space $S^1_1W([0,1]^d)$ which is important in numerical analysis, especially numerical integration, but has rather bad Fourier analytic properties.
翻译:在本文中,我们研究某些相关多变量功能类的取样回收问题,这些功能类没有紧密地嵌入$L ⁇ infty$。 因此,将抽样数字与统一规范中科尔莫戈洛夫宽度挂钩的最近工具不适用。 从某种意义上讲,我们继续研究小平稳问题,在Besov和Triebel-Lizorkin范围内,考虑“非常”小的平稳性能,其周期性强强的比索夫和Triebel-Lizorkin空间“非常”的平稳性能。对于这些功能的恢复知之甚少,只有Oswald在单方币情况下的旧结果除外。作为第一步,我们证明Faber-Schauder系数$_p-norm的统一性在固定水平上是统一的。使用这个方法,我们可以控制一个(Smolyakak)的Faber-Schauder系列在$_q ⁇ infty $上出现的错误。它证明主要的趋同率是锐的。我们因此也从$S%_1, a tradal deal is a trueal is a devely_deal) a, a deal is a, laly_xy_xyxy_xy_xy_xy_xy___xy_xy_xy_xy_xalisalisalisalisaxal a, a, a, a, a, a, a, a, a, axxxxxxxxxxxxxxxxalxalxalxalxalxalxxxxxalxalxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) a, a, a, ex。