We study localization properties of low-lying eigenfunctions of magnetic Schr\"odinger operators $$\frac{1}{2} \left(- i\nabla - A(x)\right)^2 \phi + V(x) \phi = \lambda \phi,$$ where $V:\Omega \rightarrow \mathbb{R}_{\geq 0}$ is a given potential and $A:\Omega \rightarrow \mathbb{R}^d$ induces a magnetic field. We extend the Filoche-Mayboroda inequality and prove a refined inequality in the magnetic setting which can predict the points where low-energy eigenfunctions are localized. This result is new even in the case of vanishing magnetic field. Numerical examples illustrate the results.
翻译:我们研究的是磁性Schr\'odinger操作员的低洼机能的本地化特性 $\ frac{1\\\\2}\ left (- i\ nabla - A(x)\right)\\\ fi + V(x)\ fi =\ lambda\ fi, $, 其中 $:\ Omega\rightrow\ mathb{R ⁇ geq 0} 是给定的可能性, $A:\ Omega\rightrow\ mathbb{R ⁇ d$ 引导出磁场。 我们扩大了Filoche- Mayboroda 的不平等, 证明了磁场中的精细的不平等性, 可以预测低能机能机能的局部化点。 即使在磁场消失的情况下, 结果是新的。 数字示例可以说明结果 。