Stochastic models for collections of interacting populations have crucial roles in scientific fields such as epidemiology and ecology, yet the standard approach to extending an ordinary differential equation model to a Markov chain does not have sufficient flexibility in the mean-variance relationship to match data. To handle that, over-dispersed Markov chains have previously been constructed using gamma white noise on the rates. We develop new approaches using Dirichlet noise to construct collections of independent or dependent noise processes. This permits the modeling of high-frequency variation in transition rates both within and between the populations under study. Our theory is developed in a general framework of time-inhomogeneous Markov processes equipped with a graphical structure, for which ecological and epidemiological models provide motivating examples. We demonstrate our approach on a widely analyzed measles dataset, adding Dirichlet noise to a classical SEIR (Susceptible-Exposed-Infected-Recovered) model. Our methodology shows improved statistical fit measured by log-likelihood and provides new insights into the dynamics of this biological system.
翻译:在流行病学和生态学等科学领域,收集相互作用的人口的托盘模型具有关键作用,然而,将普通差异方程式模型扩展至马尔科夫链系的标准方法在平均差异关系上没有足够的灵活性来匹配数据。为了处理这一点,以前曾使用伽马白噪音在比例上制造过散的马尔科夫链条。我们开发了新办法,利用迪里赫特噪音来构建独立或依赖的噪音过程的集集。这允许在所研究的人口内部和之间对过渡率的高频率差异进行建模。我们的理论是在配有图象结构的时间-异同质马尔科夫进程总框架内开发的,为此,生态和流行病学模型提供了激励性实例。我们展示了我们对广泛分析的麻疹数据集的方法,将狄里赫特噪音添加到典型的SEIIR(可感知-开发-受感染-回收)模型中。我们的方法显示,通过对日志相似度的测量,改进了统计,并提供了对这一生物系统动态的新见解。