We present new second-kind integral-equation formulations of the interior and exterior Dirichlet problems for Laplace's equation. The operators in these formulations are both continuous and coercive on general Lipschitz domains in $\mathbb{R}^d$, $d\geq 2$, in the space $L^2(\Gamma)$, where $\Gamma$ denotes the boundary of the domain. These properties of continuity and coercivity immediately imply that (i) the Galerkin method converges when applied to these formulations; and (ii) the Galerkin matrices are well-conditioned as the discretisation is refined, without the need for operator preconditioning. The main significance of these results is that it was recently proved (see Chandler-Wilde and Spence, Numer. Math., 150(2):299-271, 2022) that there exist 2- and 3-d Lipschitz domains and 3-d starshaped Lipschitz polyhedra for which the operators in the standard second-kind integral-equation formulations for Laplace's equation (involving the double-layer potential and its adjoint) $\textit{cannot}$ be written as the sum of a coercive operator and a compact operator in the space $L^2(\Gamma)$. Therefore there exist 2- and 3-d Lipschitz domains and 3-d starshaped Lipschitz polyhedra for which Galerkin methods in $L^2(\Gamma)$ do $\textit{not}$ converge when applied to the standard second-kind formulations, but $\textit{do}$ converge for the new formulations.


翻译:我们为 Laplace 的方程式展示了内部和外部二类内分解问题的新二类内分解配方;这些配方的操作员对一般利普西茨域的持续和胁迫性作用,以$mathbb{R ⁇ d$,$d\geq 2美元,空间$L22(\Gamma)美元,其中$Gamma$表示域的边界。这些连续性和腐蚀性特性立即意味着:(一) 加勒金方法在应用这些方程式时会趋同;和(二) 加勒金矩阵是完善的,因为离异性化得到了完善,而不需要为操作员设定先决条件。这些结果的主要意义是最近证明(见Chandler-Wilde和Spence,Nummer.Mat.,150(2):299-271,2022美元表示存在2和3d利普施利普西茨域域域域域域域域域和3dlipschitz limhedlational-lipislational-lationforate deal developal destrations) 3G-listal-lationslationslation 和G-libal-lational-libal-lation 3xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月7日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员