Considering the importance of building a good Visual Dialog (VD) Questioner, many researchers study the topic under a Q-Bot-A-Bot image-guessing game setting, where the Questioner needs to raise a series of questions to collect information of an undisclosed image. Despite progress has been made in Supervised Learning (SL) and Reinforcement Learning (RL), issues still exist. Firstly, previous methods do not provide explicit and effective guidance for Questioner to generate visually related and informative questions. Secondly, the effect of RL is hampered by an incompetent component, i.e., the Guesser, who makes image predictions based on the generated dialogs and assigns rewards accordingly. To enhance VD Questioner: 1) we propose a Related entity enhanced Questioner (ReeQ) that generates questions under the guidance of related entities and learns entity-based questioning strategy from human dialogs; 2) we propose an Augmented Guesser (AugG) that is strong and is optimized for the VD setting especially. Experimental results on the VisDial v1.0 dataset show that our approach achieves state-of-theart performance on both image-guessing task and question diversity. Human study further proves that our model generates more visually related, informative and coherent questions.


翻译:考虑到建立良好的视觉对话框的重要性,许多研究人员在Q-Bot-A-Bot图像猜测游戏设置下研究这一专题,询问者需要提出一系列问题来收集未披露图像的信息。尽管在监督学习(SL)和强化学习(RL)方面取得了进展,但问题仍然存在。首先,以往的方法没有为询问者提供明确有效的指导,以产生视觉相关和内容丰富的问题。第二,RL的效果受到一个不胜任的成分,即根据生成的对话框进行图像预测并相应给予奖赏的Guesser的阻碍。为了提高VD质问者:1)我们建议一个相关实体在相关实体的指导下提出问题,并从人类对话中学习基于实体的质问策略。2)我们建议一个强化的Guesser(AugG),它非常强大,正在优化VD设置的设置,即Guesserner,他根据生成的对话框进行图像预测并相应给予奖赏。为了提高 Visal-Dial Informactal Processional Processional-holviews the Viscial sublical subal suble suble subal subal subal sublical subal suble subal subal suble subal subal subal subal subal subal sublement suble sublemental suble sublemental sution sution suble sutional sublement sutional sutional suble subildal suble suble subal subal suble subal suble subal suble subal sa sa subal subal subal subal subal subal subal sub sub sub sub sub sa su su su su su su su sa sa sa sa sucal sa sa sa sa sa sub sub sub

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
4+阅读 · 2018年11月12日
VIP会员
相关VIP内容
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Top
微信扫码咨询专知VIP会员