This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.
翻译:本文探索了顺序建议中的元学习以缓解冷启动问题。 序列建议旨在根据历史行为序列捕捉用户动态偏好, 并将其作为大多数在线建议情景的关键组成部分。 但是, 大多数先前的方法都难以推荐冷启动项目, 这些情况在这些情景中很普遍。 由于在设定顺序建议任务时通常没有侧面信息, 以往的冷启动方法无法在只有用户项目互动时应用。 因此, 我们提议了一个基于元学习的冷启动序列建议框架, 即Mecos, 以缓解连续建议中的冷启动问题。 这项任务是非三重的, 因为它在新颖且具有挑战性的背景下针对一个重要问题。 模式有效地从有限的互动中获取用户偏好, 并学习与潜在用户匹配目标冷启动项目。 此外, 我们的框架可以与基于神经网络的模型无痛地整合。 在三个真实世界数据集上进行的广泛实验, 以验证Mecos 的优越性, 其平均改进率高达99%、 91% 和 70% HR10 超过 基线方法中 。