We consider the problem of conversational question answering over a large-scale knowledge base. To handle huge entity vocabulary of a large-scale knowledge base, recent neural semantic parsing based approaches usually decompose the task into several subtasks and then solve them sequentially, which leads to following issues: 1) errors in earlier subtasks will be propagated and negatively affect downstream ones; and 2) each subtask cannot naturally share supervision signals with others. To tackle these issues, we propose an innovative multi-task learning framework where a pointer-equipped semantic parsing model is designed to resolve coreference in conversations, and naturally empower joint learning with a novel type-aware entity detection model. The proposed framework thus enables shared supervisions and alleviates the effect of error propagation. Experiments on a large-scale conversational question answering dataset containing 1.6M question answering pairs over 12.8M entities show that the proposed framework improves overall F1 score from 67% to 79% compared with previous state-of-the-art work.
翻译:我们考虑在大型知识库中回答对话问题的问题。 为了处理大型知识库的巨大实体词汇, 最近的神经语义分析法通常将任务分解成几个子任务, 然后依次解决, 从而导致以下问题:(1) 早期子任务中的错误将会传播, 并对下游任务产生负面影响;(2) 每个子任务不能自然地与他人共享监督信号。 为了解决这些问题, 我们提议了一个创新的多任务学习框架, 用于设计一个点化的语义分析模型, 以解决对话中的共通点, 并自然地赋予与新颖类型识别实体探测模型进行联合学习的权力。 因此, 拟议的框架可以共享监督, 减轻错误传播的影响。 实验一个大型对话问题, 解答包含12.8M 实体的1.6M 问题对的数据集。 实验显示, 拟议的框架比以往的先进工作提高了总的F1分从67%提高到79%。