In this paper, we exploit a memory-augmented neural network to predict accurate answers to visual questions, even when those answers occur rarely in the training set. The memory network incorporates both internal and external memory blocks and selectively pays attention to each training exemplar. We show that memory-augmented neural networks are able to maintain a relatively long-term memory of scarce training exemplars, which is important for visual question answering due to the heavy-tailed distribution of answers in a general VQA setting. Experimental results on two large-scale benchmark datasets show the favorable performance of the proposed algorithm with a comparison to state of the art.


翻译:在本文中,我们利用一个记忆增强神经网络来预测对视觉问题的准确答案,即使这些答案在培训中很少出现。记忆网络包含内部和外部的记忆区块,并且有选择地关注每个培训实例。我们显示,记忆增强神经网络能够保持相对长期的稀缺培训示范体记忆,这对于视觉回答十分重要,因为一般VQA环境中的大规模解答分布繁琐。两个大型基准数据集的实验结果显示,与艺术状况相比,拟议算法的有利性。

4
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Arxiv
6+阅读 · 2018年3月31日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
Top
微信扫码咨询专知VIP会员